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Density-functional theory for the freezing of Stockmayer fluids
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We examine the freezing of Stockmayer fluids which consist of spherical particles interacting via Lennard-
Jones and dipolar forces and thus represent, e.g., models for ferrofluids. The theoretical analysis is based on an
appropiate version of density-functional theory which is capable of describing both the freezing transition and
the formation of orientationally ordered phases. This allows us to study the variation of the topology of phase
diagrams as a function of the strength of the dipole moment of the particles. We find an isotropic gas and liquid
phase, a ferromagnetic liquid, an orientationally disordered solid, and a ferromagnetic solid. For small dipole
moments the formation of the ferromagnetic liquid is preempted by freezing. For the ferromagnetic solid the
face-centered-cubic structure turns out to be more stable than the body-centered-tetragonal structure.
[S1063-651%96)09108-9

PACS numbg(s): 64.70.Dv, 75.50.Mm, 75.30.Kz, 77.80e

[. INTRODUCTION It turns out that such an orientationally ordered liquid
phase appears at high number densities. Since in the analytic
There is mounting theoretical evidence tephericalpar-  calculations so far the freezing of the liquid has not been
ticles endowed with an anisotropic interaction potential carconsidered and the Monte Carlo calculations cannot sweep
form afluid phase with long-ranged orientational order. Thisthe full phase space spanned by the thermodynamic variables
ferromagnetic nematic phase has been observed in a numbemnd the interaction parameters of the model, one faces the
of Monte Carlo simulations for dipolar sofi,,2] and hard important question of whether the freezing of the fluid pre-
[3-5] spheres as well as for the Stockmayer flL6di which  empts the formation of a liquid phase with long-ranged ori-
consists of spherical particles which possess a pointlike peentational order. To this end we study a density-functional
manent dipole moment and in addition interact according taheory which is able to address this question.
the spherically symmetric Lennard-Jones potential. These In the past decade density-functional theories have
findings have been confirmed and analyzed systematicallgvolved which offer a unified and quantitatively reliable de-
within the framework of density-functional theory7—9]  scription of the vapor, liquid, and solid phases of classical
which refines more phenomenological descriptipf3-13.  fluids. A number of sophisticated approaches have been de-
Similar phase diagrams have been repoftet--17 for so-  signed in order to analyze the liquid-solid phase transition as
called Heisenberg fluidg18—21] whose particles have an well as the equilibrium structure of the solid based on liquid
anisotropic interaction due toshort-rangedHeisenberg ex- state correlation function28]. These theories have mainly
change coupling between fixed spins. If instead the Lennardseen tested for the simplest model which exhibits a freezing
Jones part of the interaction potential is augmented by #&ansition, i.e., the hard-sphere system. In general the results
nonspherically symmetric contribution of the same range exare in fair agreement with Monte Carlo simulation data. If
hibiting an angular modulation which varies twice as rapidlythe liquid state correlation functions required as an input are
as the dipole-dipole interaction potential, one observes thebtained from numerical simulations or from integral equa-
formation of a nonferromagnetic nematic phg2g-24. tion theories such as the hypernetted-chain approximation,
For three reasons the Stockmayer fluid with litmg-  these density-functional theories can be generalized to fluids
rangeddipolar interaction is particularly interesting. First, it with long-ranged attractive interactions. In another approach
represents a reasonable model for molecular fluids whosthe attractive interactions are treated as a perturbation of the
constituents carry a permanent electric dipole moment. Sediard-sphere system and are included as a mean-field-like cor-
ond, it can also be used as an effective model for ferrofluidsection in the density functional. One successful example for
which are colloidal suspensions of permanently magnetizeduch an approach has been given by Curtin and Ashcroft
spherical particles. Third, due to the slow decay of the dipof29], who obtained a phase diagram for the Lennard-Jones
lar interaction the type of long-ranged orientationally ordersystem in good agreement with numerical simulations.
differs from the parallel alignment known of ferromagnets The freezing of anisotropic particles has been tackled only
with short-ranged exchange interaction. One finds that then a few cases for fluids of hard ellipsoid80—33, hard
actual configuration displays a smooth spatial variation ordumbbells[30,33,34, and dipolar hard spher¢83,35. The
the scale of the size of the sampR5]. These domains are reason for the much higher complexity of this problem com-
not pinned by lattice anisotropies or lattice imperfections agpared to atomic fluids lies in the increased number of vari-
they occur in solid ferromagnets with dipolar interactions. Itables entering the interaction potential and the correlation
is this particular kind of inhomogeneous magnetization strucfunctions as well as in the large variety of conceivable crys-
ture which yields a free energy which does not depend on th&l structures due to the lower symmetry in the case of ori-
sample shape in spite of shape-dependent demagnetizatientational order in the solid. Nonetheless, in order to address
effects[26,27,25. the question formulated above we undertake the difficult task
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of constructing a density-functional theory for the freezing ofapproximated by a hard-sphere fluid with a temperature de-
the Stockmayer fluid. For reasons of simplicity we shall onlypendent hard-sphere diameter given by the Barker-
consider two possible lattice structures: the fcc lattice, whictHenderson formul&39] [ 8= (kgT) 1]
is known to be stable for the Lennard-Jones fluid and there-
fore may be expected to remain so at least for small dipole
moments, and the body-centered-tetragofiatt) lattice,
which has been observed in simulatid@s4] and in experi-
ments with electrorheological fluids36] in which the in-  Due to the strong spatial variations of the density on the
duced dipole moments of colloidal particles are forced toength scale of the particle diameter, as it occurs in the solid
point in the direction fixed by an external electrical field. phase, the simple local-density approximation used in Refs.
We are aware of only two previous studig35,33 in  [8,9] for the free energy of the reference system has to be
which density-functional theory has been applied to thereplaced by a more sophisticated version. Out of the large
freezing of dipolar fluids. Both of them use the perturbativenumber of possibilities which have been suggested in the
density-functional approach initiated by Ramakrishnan anditerature (for reviews see Refd.28,40,41) we choose the
Yussouff[37] in connection with the direct correlation func- modified weighted density approximatioMWDA) [42].
tion given by first-order perturbation theory. However, theThis approach is relatively simple from the computational
results of McMullen and Oxtob}35] have been invalidated point of view because it is based on a globally weighted
by an Erratun{38]. Smithlineet al.[33] do not find an ori-  densityp obtained from an appropriate average of the actual
entationally ordered crystal, but their approach suffers fromdensity distribution in the solid. On the other hand, this pre-
an incorrect treatment of the long-ranged dipolar interactiorvents its application to the description of interfacial phenom-
(see below, end of Sec. JIIThus the present work can be ena. Nevertheless the MWDA vyields satisfactory results for
regarded as a first step towards a liquid-based theory of dihe fluid-solid transition of hard spheres so that we adopt this
polar solids. Future steps should focus on improving thescheme for the description of the reference system. Within
guantitative reliability of this approach. this approximation the reference contribution to the total free
energyF =F g+ Foyc IS

d(T)= f:dr(l—e*BWuU))_ (2.4)

II. DENSITY-FUNCTIONAL THEORY

. 1
The Stockmayer fluid consists of spherically symmetric Fref {p(r,®)}]1= Ef d®rp(r)[In(p(r)\3)—1]
particles, interacting via the Lennard-Jones potential, v

il
12 6 3 -
g g +— drfdw rw)ln@ra(r,w
Wi y(rip)=4e (_ _(— : 2.1 Blv p(r@)in(mralr,»))
) ) o
. . . . . . . +Vpof , 2.
with embedded point dipoles which give rise to the dipolar polev(p) @9
interaction potential where the first two terms represent the ideal gas contribution
m2( 3[ ()1 ][N0 ) r1,] with the thermal wavelength. The second term vanishes in
Weiof(T 12,0, 0") = — T( @) 5 @) the case of an isotropic orientational distribution for which
P Mo V) a(r,w)=1/(47). The last term is the Percus-Yevick free

energy of the hard-sphere fluid evaluated at the weighted
—ﬁ(w)-ﬁl(w’))ﬁ)(rlz— o) (2.2  densityp:

3 1
with r,=r—r’, wherer andr’ denote the positions of the Blpy(p)= 5((1——)2_1) —In(1—17n) (2.6)
interacting particles aneh andw’ their orientationsm is a K
unit v_ector in the direction _Oa‘u andm the_ at_)solute value of \yith the packing fractiony=(=/6)d(T)3p. The weighted
the dipole moment. The dipolar potential is cut off for par- densityp is given implicitly by
ticle separations less tham. Within the framework of

density-functional theory the system is described by the 1 __
number density of particles at a pointand with orientation = oV Vd3r fvd3r’p(r)p(r’)w(r12;p), 2.7
w:

p(r, @) =p(Na(r,o) 2.3 where the weighting functiow is determined by the require-

ment that in the limit of a homogeneous fluid the second
The angular distribution(r,w) is normalized to 1 so that functional derivative of the free energy yields the Percus-

po=1N[,d% p(r) is the overall mean density of the sample Y €Vick direct correlation function:
with volumeV.

In order to construct a density-functional theory which -B
describes both the fluid and the solid phases of the Stock- p(1)—py OP(1)Ep(r’)
mayer system, we generalize our ansatz of RE8s9].

Within this approach the interaction potential is separatedf the density distribution in the solid is parametrized as a
into a suitable short-ranged reference part and a long-rangeslim of Gaussian distributions of width centered at the
part which is treated perturbatively. The reference system ifattice pointsR,

[Vpofpy(p)
SWpdledp)] L 2
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)32 Ry whereP, are Legendre polynomials artddenotes the angle
P(r):(;) ; e’ , (29 with respect to the preferred directidvl. This symmetry
does hold in a liquid. If there are deviations in a solid they
Eq. (2.9 yields in the thermodynamic limit the following must be compatible with the symmetry of the lattice. There-
implicit equation forp [42], fore, in a more general expansion of the orientational distri-
bution in terms of spherical harmoni¥s,(w), contributions
— _ %2 — with m#0 may arise only for rather large valueslofe.g.,
”(po’y)_po(l_ 2/3f;,Y(_)q;o & Cev(dip) | for 1=3 if M|(111) and forl =4 if M|(100), where(lhk) is
(2.10  the standard notation for a set of equivalent lattice direction.
(iv) Following the literature we parametrize the number
in which the sum rUnSﬂ/er the Corresponding rECiprocaI Iatdensity according to qug) For hard Spheres a more gen-
tice vectors andcpy(q;p) is the Fourier transform of the eral ansatz in terms of a Fourier series as well as Monte
direct correlation function(For an fcc crystal of hard spheres Carlo simulations have revealed only small deviations from
this equation has actually two solutiof¥3], one of whichis  this form[41].
larger thanp, and is therefore discarded for physical rea-  For sharp peaks with small overlap, i.e., for large values
sons) In Eq. (2.9 and in the following the lattice sum over of 4, and in the thermodynamic limit Eq2.9) leads to the

R is unlimited and its truncation for a finite volumé is  following approximate expression for the translational en-
accomplished by restricting the integrations oveandr’,  tropy contribution in Eq(2.5):

respectively, to the sample volunve
In agreement with Refs[42] and [29] we use the )32 ,
Carnahan-Starling formulgi4] f d3rp(r)ln(p(r))\3):(—) > j dBre— 7R
\Y ™ R \%

L) 21 o
cs™ (1 p)? ' X1 In (;) As}—y(r—R)z]
for the fluid phases which renders better results for high den- _4yR?
sities, at which the liquid-solid transition takes plafE€his +0O(e 1)
construction leads to a discontinuity of the density-functional 3 3
upon approaching a homogeneous configurapdn) = pq =poV| = In(\?yl7)— —}
from a periodically varying solid configuration with the same 2 2
mean density. However, this does not pose a problem, be- +O(e*4“/Ri), (2.13

cause this discontinuity is not reached due to the density gap
of the first-order liquid-solid transitions. Moreover, using the ) ) ) . )
Percus-Yevick approximation also for the ||qu|d, which where Rl is the nearest nelghbor distance in the lattice.

would be more appealing from a principal point of view,

results only in a slight modification of the coexistence den- lIl. EXCESS CONTRIBUTION
sities of hard sphereg1].] TO THE DENSITY FUNCTIONAL
In order to limit the number of minimization parameters
we consider only density configurations which fulfill the fol- A. Ansatz for the excess free energy
lowing requirements. Regarding the perturbative contribution to the free energy

(i) The spatial and orientational dependences factorizestemming from the excess part of the interaction potential,

i.e., p(r,w)=p(r)@(w). We focus on the case of a vanishing one could be inclined to adopt from Ref8,9,29 the ex-
demagnetization factofi.e., a long and thin samplefor  pression

which the above factorization is fulfilled in the ferromagnetic

liquid [25]. We expect that this is a reasonable approxima- 1 3 3, - -,
tion also for the solid. FZ‘Q‘C’:—ﬁLd rfvd r'dodw’p(r,w)p(r’,o’)
(ii) The solid has an fcc structure, which is known to be _
true for the Lennard-Jones fluid. We assume that the direc- XO(rp—o)f(r—r",w,w") (3.2

tion of the magnetization is parallel to the long axis of the

sample. However, the orientation of the lattice relative to thi ith

axis is left for minimization. This addresses the issue of the

most favorable lattice orientation of the solid which emerges ~ ,

from an orientationally ordered liquid by freezing. As it will (1,0 0')=(e AWt Wirz0.0)l_1) (3.

turn out, this orientation is determined bwlk contributions

to the free energysee below the discussion following Eq. But this leads to unreasonable results already for the pure

(3.39)]. _ . o _ Lennard-Jones fluie.g., atT* =kgT/e=1.35 the values of
~ (i) The orientational distribution has axial symmetry, the liquid and solid densities at coexistence are
ie., pf=p03=0.89 andp’=p0>=1.35 as compared with
17 pi =0.964 andp} =1.053 from numerical simulatiofg5]).
_ Therefore we combine E(3.1) with the ansatz of Curtin
=— P,(cos), 2.1 .
a(®) 27720 aiPi( ) 2.12 and Ashcroft[29] which for the Lennard-Jones systems
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yields results that are in good agreement with simulatiorHere(- - ), , denotes the average over the molecular ori-
data. To this end the excess contribution is divided into twaentationsw andw’ andgys(po,r) is the Percus-Yevick pair
parts: distribution function for hard spher¢46]. For the ferromag-
netic liquid as well as for the solid we add the expression

Fexc™ Fexc,l +AFoyc, (3-3)
where the contribution for an isotropic fluid is approximated 1
by — 3 f 3,7 /2 e _ﬂ
i ) AF oy zfvd rdw Vd r'dm (p(r,w) yp
[
i;c = Ep%fvdsr Ghs(po,MIWLy(r)
X

;)(r’,w’)—j—:;>v~v(r—r',w,w') (3.5

1

"B

(l_<exq_deip(rywvw,))>ww’) .

( 1
Wi i(rip)+ E[l_exF(_BWdip(rlbwaw,))]- ri2>Ro
~ 1 ,
W(rp,00')= _5+E[1_9Xp(_ﬂwdip(r12,w,w NI o<r;p<Ry . (3.6)
—E€, R1<r12<0-
ko’ I’12<R1

R,=2Ys denotes the position of the minimum of the The number<(l,l,l,m;m,m) denote Clebsch-Gordan coef-
Lennard-Jones potential aft=R;(p,) is half the nearest ficients. In terms of these functions the dipolar potential is
neighbor distance in the solidfor an fcc crystal simply given by

R, =2"%6 ¥ so that for reasonable solid densities

3 . . . . m2
poo~°=0.8 one hask;<g; for a ferromagnetic liquid the _ Ne — —am32J2 ,
dependence ofAF. on R; drops out. The cutoff at Waip(F12,@,0") rfz( & \/; 1d 0,0, 01))-
r,=R; prevents self-interaction effecf29] and is neces- (3.9

sary to obtain a liquid-solid transition within a reasonable

density range. In E¢(3.6) the Lennard-Jones potential is not Equation(3.5 can be written as a sum of three terms:
included in the argument of the exponential in order to en-

sure that in the absence of a dipole moment E88)—(3.6) 3 314 g~ -

reduce to the ansatz of Curtin and Ashci@]. AFeXCZELd rd“’fvd r'de’p(r,w)p(r’,0’)

XW(r—r',w,o")
B. Fluid and solid phases

Like any function that depends only on the relative orien- — ﬂj d3rde d3r'de’ p(r,0)W(r—r1',w,0')
tations and positions of two uniaxial molecules the kernel 4m )y v

Y 1 Po 2 3 3,7 Zey ’ ’
W(rlz,w,w’)=%I Wi (M2 Py (@, 0" 019 (3.7) ) —47T> fvd fdwfvd rdo'W(r—r',0,0")
— AR 20FEL AR,
can be expanded in terms of the rotational invariant functions _ A (SR (LR)
. = + . .
@, ,, defined ag47] AFec +AF e (3.10

Here, in order to proceed, we separated the kernel
w=w SR+ w R into a long-ranged parwv(:R) decaying

D (0,0 0= > C(l4l,l,mm,m) ~r1_23_ at large distanceseand a short-ranged peit’ whose
Mg Mz,m contributions decay~rq,” or faster. The expansion of the
><Y|1m1(w)Y|2m2(w')Y|*m(w12)- _exponentlgl in Eq(3.6) _shows that the Iong.-rf';mged_ part is

just the dipolar potentiaivg,. Terms containing this part

(3.8 must be treated carefully because integrals of the form
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Sy rwR(r w,w') are divergent folV—o. On the other tive modifications of the liquid phase diagrams, whereas the
hand, one hagde’ wg(r,w,’) =0 so that the long-ranged qualitative features remain unchanged.

part of W can be ignored il FZ). andAF &), Thus one finds Now we return to the discussion of the solid phase. With
in the thermodynamic limit Egs.(2.12, (3.7, andY)o(w) = V(2I +1)/(4m) P|(cosf) one
obtains
AFGe 1 p5 (=
lim = 1,4 drr2woegr) 1
Voo \% 2 (4) R1 AFE&%(Z:ZEJ‘ d3rf d3r’p(r)p(r’)
\Y% \%
=—2mpie(\20°~RI+ 5207
1, 1 x> Wi LI (T2 Ky e ), Pi(costp)
+Zp d3r= Il
270 g B
(3.19
X[1_<exq_BWdip(rvwaw,))>ww’]'
(3.1 with
With the substitutioni(,r—r’)=(r,,r1,) the second term in 1\2 47(21+1)
Eq. (3.10 can be written as Kipa =5~ (2|1+1)(2|2+1)C(|1|2|,000)-
3.1
CAFZ 1pie (318
lim =--—| drpdoerije(w)
Vo YV 2 47 R, For the short-ranged contribution the spatial integrations can

be extended over the whole space. After performing the

f doide W(fyp,00')|. (3.12 transform_ation(%(_r+r'),r—r’)=(rs_,r12) and inserting Eg.
(2.9 the integration overg results in

X

Using Egs.(3.7) and (3.8) it can be shown that the expres-

s . 1( vy 312
sion in square bracl_<ets does not depengiuomvhlch allows A,:g(,CSR):E 2_) > Ky 1,0, D 3d3r12
one to perform the integration over leading to P RR eV JR

_ _ n_p’'\2
AF2=AF®. (3.13 x e~ Az (RERIPWiSR(r 1) Py (cosdy).
In the following paragraph we examine the remaining (3.19

term AFS}C for the case of a homogeneously magnetized ) )
fluid, for which p(r, ) = pya(w) so that we can resort to the Since the integrand depends only on the difference of the

results of Ref[9]. There we have analyzed thoroughly the lattice vectors one summation can be carried out:
quantity Q. [Eg. (2.10 in Ref.[9]] which has a completely

analogous form(In particular, the kernel o€, has exactly ~  AFGSP 1y .
the same long-ranged parfThus we have for a ferromag- I'mm v 2Polo, |2 K|1|2|a|1a|2R2R3 de M12
netic liquid in a sample with vanishing demagnetization fac- = <
tor Xe~ V’Z(rlfR)zwfﬁFj(rlz) P (cos;,). (3.20
1) _ 1,S! 1,LR
AF R =AFLSR+ AFGER (3.19

Now we express the anglé,, between the direction of the
with magnetizationM and the vector, in terms of the solid
angleswy, and o, of the directionsM andr, in a frame of

ARG < f h lar axis i llel to the latti
li _ 2 ~ 2 fluid ph 3.15 reference wnose polar axis Is paralle to the lattice vector
lim == 2,0 Uof (fluidphases (3158
AFSER 8x 4
lim f/“ =—fp2m2a§ (fluid phases, PI(COSHIZ):m% Yim(om)Yim(or). (32D

(3.15h
L . Since the exponential factor in E¢3.20 depends only on
where the coefficients, are given by the angle between;, andR, i.e., on the polar angl®, in
w, , we need to consider only the tenm=0, and therefore

oo

'"—if drr2w,o(r) (3.16
U=Trarr ), 4 Wine(r). ' AE(LSR

lim > = E a | . Q) (323
Compared to Ref[9] the occurrence ofv; o(r) instead of VoV PP

—(1/B) f),0(r) together with the different approximation for

the homogeneous liquitEq. (3.4)] lead to minor quantita- with
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1 y |32 n,+n,+n; must be even, but this is not essential for the
a1 = Epo(z) Kiil 23 Pi(cosfy) following arguments. The result is valid for any cubic lat-
Relt tice,) If some of the numberg; are equal or zero not all of
3 2R (SR the 48 vectors generated by the permutations and sign
X f‘ljgd re” wi i (r)Pi(costy). changes in Eq3.31) are different. Thus the result after sum-
i ming over these 48 vectors has to be divided by an appropi-
(3239 ate combinatorial factor. The angt, betweenM andR is

In order to limit the number of terms in E¢3.23, the ex- SiEn,0M;
ponential in Eq(3.6) is expanded and only contributions up cosﬁ,veng—m. (3.32
to orderm? are taken into account, i.e., (ZiMPZin)

1 Therefore one has
w(SR " — _ - 2 ’ 6
WP w,0") =D (r) 2ﬁwdip(r,w,w )+0(m°)

1 (SN, M)?— =02, S M2
(3249 O Pz(cong)ZEE s> i =Ny M; iNzi)2iM;
shell

signs @ EiniinMiz
with .
= L, 202
W y(r), r>R; EiniZEiMizg (BEI Mlnﬂ'(l)
Dy(r)=1¢ —& R<r<R, (3.25
2 2
0, r<R1. _Z MI; nﬂ'(])) (333

In this approximation the coefficienﬁ|l|2, can easily be pecause the terms,,yn . with i #j vanish after summa-
determined from Eq(3.9) and the product rule for the rota- tion over the signs. Interchanging the order of the summa-
tional invariants(see Appendix B of Ref.9]), which allows tions yields
one to writed®?,, as a sum of the invariantd; i, . In this

. 4
order the only nonzero coefficients are ShEe" P,(cosy) = E-n?E»Mzz MIZE <3n727(i)_2 ni(j))
it <Vl 1 ™ I
3/2 1 Bm4
Wood )= (47)>4 P4(r)— 375 ) (3.26 =0 (3.34

becauseX _3n2,=3_3.n2  =6(n’+n2+n2). [See also
1 Am? (i) Moy = 0N+ N+ N3 .
Wi T) =WooAT) = — 1_5?_(477)3/2’ (3.27 the Append|>-< of Ref[33] where th!s result has been derlv-ed
for the special cas&||(100).] This means that all coeffi-
cientsay i, in Eq. (3.23 with |=2 are zero. Based on a

4
Wood(F) = — L\/_ B_n;(47-,)3/2, (3.28  similar but more lengthy calculation one obtains fer4
155 r
> P,(cos) = ! h M 3.3
1 2 pm* i & s(cos)= 12 z(n)z(M), (3.39
WA 1) =~ 75\ 35 6 (47)™ (3.29
whereh is the number of vectors in the particular shell and
2 [2pm?
Woo )=~ = —'8—6(477)3’2. (3.30 X3+ X5+ X5— 3(X3x5+ X553+ X5x2)
SV3ST 2(X=(X1,X2,%3))=

|x[* '
3.3
C. Lattice sums (3.39

Since the integral in Eq3.23 depends only on the abso- N O(m") the term proportional t@y, is the only contribu-
lute value of the lattice vectdR, one can group the lattice ton to the free energy which depends on the orientation of

vectors into shells with fixedR| and thus consider the re- M relative to the lattice. Due to the form of E¢3.39
stricted SUM S P, (COSH) =S (COSH) OVer an indi- z(M) can be factored out of the summation o\t and the
vidual shell first. Fol =0 this equals the number of vectors mps_t favorable direction df/l IS given b_y the maximum or
belonging to this shell. If we restrain ourselves to cubic lat-MiNimum of (M) depending on the sign of the remaining
tices using an orthogonal coordinate system which is fixed@tticé sum. The functiorg(M) attains its maximum for

with respect to this lattice, the vectors within one shell ard¥! ~(1,0,0) and its minimum foM~(1,1,1) or, respec-
given by tively, the other directions which result from these under

symmetry operations of the cube. For the parameter values
R=A(£N 1), £N 2, = Ny3), (3.3)  which we have considered, the directidril) parallel to the
space diagonal of the cubic unit cell turned out to be the
where 7= runs over all six permutations of the numbers most stable one. This means, e.g., that a solid sphere sur-
{1,2,3. The signs vary independently akd;,n,,n3} is a rounded by a perfect conductor suppressing the depolariza-
set of integers characterizing the sh€lFor an fcc lattice tion field should spontaneously choose one of the eight
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equivalent(111) directions as the axis of polarization when FULR) 4 )
cooled down from the nonmagnetic phase. v oo §p3m2ai% e d ’27j29d3xx‘3(x—a/L)
D. Long-ranged contribution for the solid phase X -4 XP,(cosh) (1—X1)(1—Xp) (1 —X3/K).
For the long-ranged contribution to the excess free energy (3.42

[see Eq(3.10] . . .
The termq=0 is the only one that occurs also in the fluid

(LR) Y s, N phase. After some algebra one can prove that this expression
AFexc =~ gMm alfvd rfvd rp(r)p(r’)r; is [as expected, see Eq8.22—(3.249 in Ref. [9]] of the
form — (8/9)p3m?a?l (k) with
X O(r15— 0)P5(C0H1)) (3.37

=X+ VK X2+ 1+ %2

1 2
m =-+— —
the thermodynamic limit has to be performed carefully by (k) 3 kao dx(1-x)

first considering a finite volume and then increasing its size

to infinity for a fixed shape. As for the ferromagnetic liquid T K X+ Inx— }In(kgﬂ(z)
one expects that the result will depend on the shape of the 2

volume. For this purpose the density ansatz in &) is

written as a Fourier series —In(1+ \/mz)+|n(l+ m) (3.43
p(r)zz pqeiQ-r, pq:poe*qzmv, (3.39 and | o(k—»)=1/3. It is this contribution which has been
q overlooked by Smithlineet al. [33] leading them to the

wrong conclusion that a ferromagnetic fcc solid cannot be
whereq runs over the reciprocal lattice ¢&-Re 7). [We  stable. It should be emphasized that for finite aspect ratios
recall that even for finite volumes the sums in E@s9) and K we expect to obtain the same free energy as in the limit
(3.38 run over an infinite lattice and the density is cut off by k— if domain formation is taken into accouij26,25.
the integration limits, Using again the transformation However, a rigorous proof of this statement for a solid within
1 Nop e V— - our theory is beyond the scope of this work. For all other
G (r+r7),r=r)=(rs.r1) one finds terms @#0) in Eq.(3.42 we insert the Rayleigh expansion

4 .
AFGY=—gmPaiX pqpqrfzvd3r12r12_3(|’12_ ) =473 1i(AN) V(0 Yin(w). (344
a.a' »m
><el/Zi(q—q’>~r12p2(c08912) d3rsei(Q+q’>-rsl The coeﬁicient§j| denote spher?cal Bessel functions which
Vg(rio) are bounded a;(x)|<M,/|x| with numbersM,. Thus we

(3.39 deduce for the radial integral in E(B.42

The integration regio(r,,) for the center of mass vector
r¢ at fixed ry, is in general given by [9]
Vs(ri) =V, (ri NV_(ryp) with

M| g(w) B
< —J' dxx""2-0
Lq ol

9(w) _
f dxx j,(Lgx)x"
al L

L

forL—o andn=1; (3.45
1
Va(rp)={r=zarijreVj. (340 e functiong(w) defines the upper limit for the radial inte-
gration in the directionw and is determined by the shape
We now consider a cuboid with two equal sides of lengthot \/. For this reason the last three factors in E2142) can
L and one side of lengtkL. Then the seVs(r;)) is also @  pe replaced by one. In order to determine the bulk contribu-
cuboid so that tion of FX®/V in the thermodynamic limit the integration in

Eq. (3.42 can be replaced by an integration over the unit

f & eiq‘rS:J‘(Lxlz)/Z q J'(Lylz)/2 q sphere. The neglected parts from the “corners” of the
V(r1) S (—Lt]x)r2 (—Ltlyid)r2 Ys cuboid 2V are the Fourier transform of an absolutely inte-
grable function and thus vanish in the lirhitj— . By using
o J(kL—\zlzl)/z 2.6 Orrs Gysaz) Eq.(3.44 and QUe to the identitf/dsz(x)/x.: —jl(x)/x we
(—KL+|239))/2 ) therefore obtain for the long-ranged contribution
(3.4 AE(LR 8
lim \jxc =— ﬁpémza"{(l—Gq;O P,(cosd,)

After performing the integrations one realizes that only terms Voo
with q+q’'=0 contribute to the bulk term in Ed3.39.
With x=r1,/L=(X1,X,,X3) andV=V/L3 one obtains

w g-azy1189) 1(q0)) . (3.49

qo
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Since, as shown above, for cubic lattices the sum 1.6
2 shelP2(C0sA,) vanishes, in this case the long-ranged part in
the limit k— <0 reduces to the expression given in E&15H
for the liquid phase.

In sum these results enable us to calculate the free energy

of the solid phase as a function p§, v [Eg. (2.9] and P
{a} [EqQ. (2.12] according to[see Egs.(3.3), (3.10, and
(3.13] ,
F(po, T,y {a}) =Fert Fexc) T AF(ei'cSFQ"' AFS(}I:_R)_ AF(e?(Z:’
(3.47 . 12
where the different contributions are given by E¢2.5), p*
(3.4), (3.22, (3.46 [recall that AF(LR) for the fcc solid
happens to be given by E¢8.1509], and(3.11). FIG. 1. The phase diagram in terms df =kgT/e and
p* =pa® for m* =m/\JoPe=1 comprises five phases: gay) (iso-
IV. PHASE DIAGRAMS AND LINDEMANN PARAMETER tropic liquid (1), ferromagnetic liquid{fl), isotropic (plastig, solid

(s), ferromagnetic solidfs). In the shaded area one has two-phase
By numerical minimization of Eq(3.47) and its counter- coexistence. The dashed lines indicate second-order phase transi-
part for fluid phases with respect to the width parameter tions between orientationally ordered and disordered phases. The
and the orientational distribution(cosd) we determine the circle marks the liquid-gas critical poinfT{ ,pg)=(1.429,0.296)

free energy of the system as a function of the mean densitgnd the squares critical end pointstg(,, pgep) = (0.998,0.715),
Po: (1.222,0.875), and (1.457,1.044). Below the triple pditbtted

line) (TY ,pge:pic Pisy =(0.964,0.017,0.753,0.994) the system
F(po,T)=minF(po,T;v,{c}) phase separates into the gas phase and the ferromagnetic solid.

Y
_ o min account only terms up to order* in F,., this coefficient is
Foo, o vmin(po, T).{ai™(po, D). (4.1) fully determined by the long-ranged contributions, which are

The coexistence densitigs and p, of two phases follow identical for the liquid and solid phases, so that one finds
from the double tangent construction:

L 4.3
T T P1)=pP1——| TFE(p2)=p2— -
dPol, ol ool ,, IPol,, In Ref. [9] it has been demonstrated that the inclusion of

(4.2 higher order terms im? leads only to slight deviations from
he straight line given by Ed4.3). At the triple temperature
¥ =0.964 there is three-phase coexistence between the gas

. : : hase, the ferromagnetic liquid, and the ferromagnetic solid.
already a substantial CPU time, we have calculated this fund? The corresponding phase diagram fiof = 1.35 is shown

tion for eachT only for seven values gj, within a density in Fig. 2. In the temperature interval* =1.3-1.8 for the

interval in which the phase transition is expected. These re: . , : .
sults are then interpolated with a Chebychev polynomial foelr|qU|d phases we find the features already discussed in Refs.

which Eq.(4.2) is solved. This procedure also avoids diffi-
culties as far as the numerical differentation with respect to m*=1.35
po IS concerned.

Figure 1 displays the resulting phase diagram for the re-

Since for the solid phase the numerical determination o
F(po,T) for one value of the parametepg and T requires

duced dipole momenm* =m/\/ce=1. At low densities 25

there is a wide coexistence region between the isotropic gas &

and liquid with a critical point at T;=1.429 and 2 fs
ps =0.296. At higher densities we find the liquid-solid tran-

sition with a density gapp} —p; =0.1-0.15. The dashed 15

line indicates continuous phase transtions between isotropic
and ferromagnetic phases. It is terminated by critical end
points at the coexistence lines of the first-order transitions.
Within the solid phase the dashed line corresponds to the line
of Curie points at which the ferromagnetic solid turns into @ 5 2. phase diagram fon* = 1.35. We use the same desig-
solid without orientational ordefplastic solid, whereas o of the phases and the same notation as in Fig. 1. We find the
within the liquid phase the line denotes the transition beyiqyid-gas critical pointiopen circlg (T* ,p*)=(1.615,0.294), the

C

tween the isotropic and the ferromagnetic liquid. This line ofricritical point (full circle) (T .pt)=(1.493,0.587), and the two
critical points p¢(T) can be obtained analytically from the triple points (dotted lines (TH, Py Pit1 - PTI) = (1.430,0.089,
coefficient ofai in the excess free energgee Eq(7.10 in 0.553,0.626) and T.pn. 0l Plsr) = (1.392,0.070,0.692,
Ref. [9]]. In the approximation used here, i.e., taking into1.031).
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0.1
6
* -l :’”
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2
1 2 3 4 5 6 7 8
o T
FIG. 3. Phase diagram fan* =2. As compared with Figs. 1 FIG. 5. Temperature dependence of the Lindemann parameter

and 2 the liquid-gas critical point has disappeared so that there a@ond the gas-solid and gas-liquid coexistence lines for three values
only four phases. The plastic solid without orientational order isOf the dipole moment. The triple points are denoted by triangles and
stable only at very high temperatures and densiti#be closest the critical end points by squares.

packing of spheres correspondspto= \2.) The inset is focused on » . ) )

the tricritical point (T%,,p%)=(2.914,0.522) and the triple point critical end point temperature falls below the triple point

(TF ,pit %y .pFs) =(2.633,0.440,0.628,1.095). temperature.

Hemmer and Imbrd19] have analyzed the Heisenberg
. . . fluid in the limit of very weak but long-ranged interactions
[8,9], namely, the common critical point between the ISOtO-¢5 \which the mean-field theory turns out to be exact. It is

pic gas and the isotropic quuiq and a ricritical poin'_[. A’F th_e interesting to note that they have found a qualitatively iden-
latter the character of the isotropic-ferromagnetic “qu'dtical sequence of phase diagrams.

phase transition changes from first order to second order. Usually the width of the thermal vibrations of the par-

The Ii_ne_ pf critigal points for this tra}r]sition origi_nates f”’”.‘ ticles around their equilibrium positions is not measured in
this tricritical point and ends at a critical end point. In addi- erms ofy but by the Lindemann parametey which is the
tion there is the ferromagnetic solid at high densities so th ; ; :
two triple points emer egwhich in this cage are close to eaiOOt- mean square d|splacement of the partlcles_from th_elr
other (pTh(Fa) gas and th?a i‘erromagnetic liquid and solid coex- quilibrium positions normalized to the nearest neighbor dis-
. : . X . tanceR,,,. Here we approximaté b

ist at T* =1.392, the gas and the isotropic and ferromagnetic nn We approx y

liquid at T* = 1.430) At high temperatures the solid loses its ¥\ 32 ,]12
orientational order along a line of critical points. The same is L=R,! —) J 3d3rr2e‘ ”
true for the casen* =2 (Fig. 3 in which the liquid-gas m R

critical point has disappeared and only a single isotropic fluid . B 13 ] ]
phase is left within our present approximation. The region ofvhich yieldsL = 2234255y for the fcc lattice. Figure 5
stability of the ferromagnetic liquid increases substantiallydisplays the temperature dependence of the Lindemann pa-
with increasing dipole moment. Only for small dipole mo- rameter along the gas-sollld and liquid-solid coexistence lines
mentsm* <1 is the ferromagnetic ||qu|d preempted com- for three Val_ueS Of. the d|p0|e moment. Below and Sllghtly
pletely by the freezing transition as shown in Fig. 4 for above the triple poink increases with temperature while at

m* =0.85. At even lower values of the dipole moment thehigher temperatures it gradually levels off at an approxi-
mately constant value independentrof as expected from

the phenomenological Lindemann criteriup8]. At the
critical end points the Lindemann parameter exhibits a small
upward cusp.

4.9

V. BODY-CENTERED-TETRAGONAL SOLID

T

Wei and Patey have observed a body-centered-tetragonal
(bct) lattice for the ferromagnetic solid in a Monte Carlo
simulation of dipolar soft spherg¢&]. Weis and Levesquig!]

08 examined both the bct and the fcc structure in a simulation of
06 , dipolar hard spheres, but they were not able to decide which
0 0.2 04 06 08 1 one is more stable. They report a helical variation of the

ot local magnetization in the fcc crystal. This possibility is not

yet taken into account in our calculatigrgee the assumption
FIG. 4. Phase diagram fon* =0.85. For this small dipole mo- (i) in Sec. Il in order to avoid in this first step of our analysis
ment the ferromagnetic liquid phase is never stable. The liquid-gathe enormously increased complexity induced by a spatially
critical point is given by T* ,p¥)=(1.385,0.299), the triple point varying orientational distributiofsee, e.g., Ref25]). More-
by (T¢ .pg:.oit pts) = (0.831,0.0081,0.779,0.981), and the critical over it cannot be ruled out that this observation is an artefact
end point by T¢ep:peep) = (1.004,0.995). due to the periodic boundary conditions used in the simula-
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tions. The bct structure has also been identified as the grourstructure for all considered values of the parameters
state of an electrorheological flujd9] even if higher multi- (m*<2) and therefore the phase diagrams do not contain
pole moments are taken into accoUbO]. This has been phase transitions between different solid structures.
confirmed experimentall36]. Inspired by these findings we

have examined the stability of the bct solid within the frame- VI. SUMMARY
work of the density-functional theory developed in Secs. Il )
and Il We have analyzed the phase behavior of Stockmayer flu-

ids by using a suitably generalized modified weighted den-

sity approximation for the density-functional theory. The fol-
R, lowing main results have been obtained.

R= 7(\/&11, J6n,,2ny), (5.1) (i) For small dipole moments the phase diagram re-

sembles that of the Lennard-Jones fluid with a critical point

where all three numbers; e Z have the same parity. The and a triple point. Within the solid phase there are second-
nearest neighbor distance is given b, 2(1/6p,)Y®> and  order phase transitions along a line of Curie points between
the magnetization points into the direction. The corre- an orientationally disordered solid and a ferromagnetic solid
sponding reciprocal lattice vectors are (Fig. 4). In the latter phase the magnetization points along
the (111 direction of the fcc lattice.
2w (ii) For larger dipole moments a ferromagnetic nematic
a= R_l(mll\/g'm2/\/6’m3/2) (32 phase appears between a line of critical points and the freez-
ing transition(Fig. 1). This line is given by Eq(4.3) and is
with m; e Z andm; + m,+ m; even. In contrast to the cubic terminated by two critical end points on the gas-liquid and
lattice the relation ¢, P>(coshy)=0 does not hold; in fact the liquid-solid coexistence line, respectively.
) (iii) Upon a further increase of the dipole moment the
o2, — 4n; (5.3 isotropic-ferromagnetic liquid transition turns first order
M 6(n§+ n§)+4n§ : within a temperature interval determined by an emerging
second triple point and a tricritical poidFig. 2).
and thusP,(cosdy) is constant within each shell, which as  (iv) For even larger dipole moments the isotropic gas-
above is defined byR|=const.(Here one shell consists of liquid transition disappears due to the formation of a ferro-
only up to 16 elements.Therefore the contributions with magnetic liquid at high temperaturéBig. 3). The orienta-
=2 in EQ.(3.22 and the sum in Eq:3.46) do not vanish for  tionally disordered solid is stable only at very high
the bct lattice. temperatures.

If these changes are taken into account the free energy of (v) The Lindemann parametdr, which measures the
the bct solid can be calculated in the same way as for the fcmean amplitude of the thermal vibrations of the particles in
solid using EQ.(3.47) and the equations referenced there.the solid phases, is approximately constant=0.11-0.12)
Again this function is minimized with respect to the width along the freezing line but decreases near the triple point and
parametery and the orientational distributions coefficients along the sublimation linéFig. 5). L exhibits a small cusp
«a for fixed mean density,. The comparison of the numeri- singularity at the critical end points.
cal results forFp(pg) and F.(po) reveals that within our (vi) Within our approximation the body-centered-
approximation the bct structure lsss stable than the fcc tetragonal lattice is less stable than the fcc lattice.

In this case the lattice vectors are given by
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