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We examine the freezing of Stockmayer fluids which consist of spherical particles interacting via Lennard-
Jones and dipolar forces and thus represent, e.g., models for ferrofluids. The theoretical analysis is based on an
appropiate version of density-functional theory which is capable of describing both the freezing transition and
the formation of orientationally ordered phases. This allows us to study the variation of the topology of phase
diagrams as a function of the strength of the dipole moment of the particles. We find an isotropic gas and liquid
phase, a ferromagnetic liquid, an orientationally disordered solid, and a ferromagnetic solid. For small dipole
moments the formation of the ferromagnetic liquid is preempted by freezing. For the ferromagnetic solid the
face-centered-cubic structure turns out to be more stable than the body-centered-tetragonal structure.
@S1063-651X~96!09108-8#

PACS number~s!: 64.70.Dv, 75.50.Mm, 75.30.Kz, 77.80.2e

I. INTRODUCTION

There is mounting theoretical evidence thatsphericalpar-
ticles endowed with an anisotropic interaction potential can
form afluid phase with long-ranged orientational order. This
ferromagnetic nematic phase has been observed in a number
of Monte Carlo simulations for dipolar soft@1,2# and hard
@3–5# spheres as well as for the Stockmayer fluid@6#, which
consists of spherical particles which possess a pointlike per-
manent dipole moment and in addition interact according to
the spherically symmetric Lennard-Jones potential. These
findings have been confirmed and analyzed systematically
within the framework of density-functional theory@7–9#
which refines more phenomenological descriptions@10–13#.
Similar phase diagrams have been reported@14–17# for so-
called Heisenberg fluids@18–21# whose particles have an
anisotropic interaction due to ashort-rangedHeisenberg ex-
change coupling between fixed spins. If instead the Lennard-
Jones part of the interaction potential is augmented by a
nonspherically symmetric contribution of the same range ex-
hibiting an angular modulation which varies twice as rapidly
as the dipole-dipole interaction potential, one observes the
formation of a nonferromagnetic nematic phase@22–24#.

For three reasons the Stockmayer fluid with itslong-
rangeddipolar interaction is particularly interesting. First, it
represents a reasonable model for molecular fluids whose
constituents carry a permanent electric dipole moment. Sec-
ond, it can also be used as an effective model for ferrofluids
which are colloidal suspensions of permanently magnetized
spherical particles. Third, due to the slow decay of the dipo-
lar interaction the type of long-ranged orientationally order
differs from the parallel alignment known of ferromagnets
with short-ranged exchange interaction. One finds that the
actual configuration displays a smooth spatial variation on
the scale of the size of the sample@25#. These domains are
not pinned by lattice anisotropies or lattice imperfections as
they occur in solid ferromagnets with dipolar interactions. It
is this particular kind of inhomogeneous magnetization struc-
ture which yields a free energy which does not depend on the
sample shape in spite of shape-dependent demagnetization
effects@26,27,25#.

It turns out that such an orientationally ordered liquid
phase appears at high number densities. Since in the analytic
calculations so far the freezing of the liquid has not been
considered and the Monte Carlo calculations cannot sweep
the full phase space spanned by the thermodynamic variables
and the interaction parameters of the model, one faces the
important question of whether the freezing of the fluid pre-
empts the formation of a liquid phase with long-ranged ori-
entational order. To this end we study a density-functional
theory which is able to address this question.

In the past decade density-functional theories have
evolved which offer a unified and quantitatively reliable de-
scription of the vapor, liquid, and solid phases of classical
fluids. A number of sophisticated approaches have been de-
signed in order to analyze the liquid-solid phase transition as
well as the equilibrium structure of the solid based on liquid
state correlation functions@28#. These theories have mainly
been tested for the simplest model which exhibits a freezing
transition, i.e., the hard-sphere system. In general the results
are in fair agreement with Monte Carlo simulation data. If
the liquid state correlation functions required as an input are
obtained from numerical simulations or from integral equa-
tion theories such as the hypernetted-chain approximation,
these density-functional theories can be generalized to fluids
with long-ranged attractive interactions. In another approach
the attractive interactions are treated as a perturbation of the
hard-sphere system and are included as a mean-field-like cor-
rection in the density functional. One successful example for
such an approach has been given by Curtin and Ashcroft
@29#, who obtained a phase diagram for the Lennard-Jones
system in good agreement with numerical simulations.

The freezing of anisotropic particles has been tackled only
in a few cases for fluids of hard ellipsoids@30–33#, hard
dumbbells@30,33,34#, and dipolar hard spheres@33,35#. The
reason for the much higher complexity of this problem com-
pared to atomic fluids lies in the increased number of vari-
ables entering the interaction potential and the correlation
functions as well as in the large variety of conceivable crys-
tal structures due to the lower symmetry in the case of ori-
entational order in the solid. Nonetheless, in order to address
the question formulated above we undertake the difficult task
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of constructing a density-functional theory for the freezing of
the Stockmayer fluid. For reasons of simplicity we shall only
consider two possible lattice structures: the fcc lattice, which
is known to be stable for the Lennard-Jones fluid and there-
fore may be expected to remain so at least for small dipole
moments, and the body-centered-tetragonal~bct! lattice,
which has been observed in simulations@2,4# and in experi-
ments with electrorheological fluids@36# in which the in-
duced dipole moments of colloidal particles are forced to
point in the direction fixed by an external electrical field.

We are aware of only two previous studies@35,33# in
which density-functional theory has been applied to the
freezing of dipolar fluids. Both of them use the perturbative
density-functional approach initiated by Ramakrishnan and
Yussouff@37# in connection with the direct correlation func-
tion given by first-order perturbation theory. However, the
results of McMullen and Oxtoby@35# have been invalidated
by an Erratum@38#. Smithlineet al. @33# do not find an ori-
entationally ordered crystal, but their approach suffers from
an incorrect treatment of the long-ranged dipolar interaction
~see below, end of Sec. III!. Thus the present work can be
regarded as a first step towards a liquid-based theory of di-
polar solids. Future steps should focus on improving the
quantitative reliability of this approach.

II. DENSITY-FUNCTIONAL THEORY

The Stockmayer fluid consists of spherically symmetric
particles, interacting via the Lennard-Jones potential,

wLJ~r 12!54eF S s

r 12
D 122S s

r 12
D 6G , ~2.1!

with embedded point dipoles which give rise to the dipolar
interaction potential

wdip~r12,v,v8!52
m2

r 12
3 S 3@m̂~v!•r12#@m̂~v8!•r12#

r 12
2

2m̂~v!•m̂~v8! DQ~r 122s! ~2.2!

with r125r2r 8, wherer and r 8 denote the positions of the
interacting particles andv andv8 their orientations.m̂ is a
unit vector in the direction ofv andm the absolute value of
the dipole moment. The dipolar potential is cut off for par-
ticle separations less thans. Within the framework of
density-functional theory the system is described by the
number density of particles at a pointr and with orientation
v:

r̂~r ,v!5r~r !a~r ,v!. ~2.3!

The angular distributiona(r ,v) is normalized to 1 so that
r051/V*Vd

3rr(r ) is the overall mean density of the sample
with volumeV.

In order to construct a density-functional theory which
describes both the fluid and the solid phases of the Stock-
mayer system, we generalize our ansatz of Refs.@8,9#.
Within this approach the interaction potential is separated
into a suitable short-ranged reference part and a long-ranged
part which is treated perturbatively. The reference system is

approximated by a hard-sphere fluid with a temperature de-
pendent hard-sphere diameter given by the Barker-
Henderson formula@39# @b5(kBT)

21#

d~T!5E
0

s

dr~12e2bwLJ~r !!. ~2.4!

Due to the strong spatial variations of the density on the
length scale of the particle diameter, as it occurs in the solid
phase, the simple local-density approximation used in Refs.
@8,9# for the free energy of the reference system has to be
replaced by a more sophisticated version. Out of the large
number of possibilities which have been suggested in the
literature ~for reviews see Refs.@28,40,41#! we choose the
modified weighted density approximation~MWDA ! @42#.
This approach is relatively simple from the computational
point of view because it is based on a globally weighted
densityr̄ obtained from an appropriate average of the actual
density distribution in the solid. On the other hand, this pre-
vents its application to the description of interfacial phenom-
ena. Nevertheless the MWDA yields satisfactory results for
the fluid-solid transition of hard spheres so that we adopt this
scheme for the description of the reference system. Within
this approximation the reference contribution to the total free
energyF5F ref1Fexc is

F ref@$r̂~r ,v!%#5
1

bEVd3rr~r !@ ln„r~r !l3
…21#

1
1

bEVd3r E dvr̂~r ,v!ln„4pa~r ,v!…

1Vr0f PY~ r̄ !, ~2.5!

where the first two terms represent the ideal gas contribution
with the thermal wavelengthl. The second term vanishes in
the case of an isotropic orientational distribution for which
a(r ,v)51/(4p). The last term is the Percus-Yevick free
energy of the hard-sphere fluid evaluated at the weighted
densityr̄:

b f PY~ r̄ !5
3

2 S 1

~12h!2
21D2 ln~12h! ~2.6!

with the packing fractionh5(p/6)d(T)3r̄. The weighted
densityr̄ is given implicitly by

r̄ 5
1

r0V
E
V
d3r E

V
d3r 8r~r !r~r 8!w̄~r12; r̄ !, ~2.7!

where the weighting functionw̄ is determined by the require-
ment that in the limit of a homogeneous fluid the second
functional derivative of the free energy yields the Percus-
Yevick direct correlation function:

2b lim
r~r !→r0

d2@Vr0f PY~ r̄ !#

dr~r !dr~r 8!
5cPY~r2r 8;r0!. ~2.8!

If the density distribution in the solid is parametrized as a
sum of Gaussian distributions of widthg centered at the
lattice pointsR,
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r~r !5S g

p D 3/2(
R

e2g~r2R!2, ~2.9!

Eq. ~2.8! yields in the thermodynamic limit the following
implicit equation forr̄ @42#,

r̄~r0 ,g!5r0S 12
1

2b f PY8 ~ r̄ !(qÞ0
e2q2/2gcPY~q; r̄ ! D ,

~2.10!

in which the sum runs over the corresponding reciprocal lat-
tice vectors andcPY(q; r̄) is the Fourier transform of the
direct correlation function.~For an fcc crystal of hard spheres
this equation has actually two solutions@43#, one of which is
larger thanr0 and is therefore discarded for physical rea-
sons.! In Eq. ~2.9! and in the following the lattice sum over
R is unlimited and its truncation for a finite volumeV is
accomplished by restricting the integrations overr and r 8,
respectively, to the sample volumeV.

In agreement with Refs.@42# and @29# we use the
Carnahan-Starling formula@44#

b fCS5h
423h

~12h!2
~2.11!

for thefluid phases which renders better results for high den-
sities, at which the liquid-solid transition takes place.@This
construction leads to a discontinuity of the density-functional
upon approaching a homogeneous configurationr(r )5r0
from a periodically varying solid configuration with the same
mean density. However, this does not pose a problem, be-
cause this discontinuity is not reached due to the density gap
of the first-order liquid-solid transitions. Moreover, using the
Percus-Yevick approximation also for the liquid, which
would be more appealing from a principal point of view,
results only in a slight modification of the coexistence den-
sities of hard spheres@41#.#

In order to limit the number of minimization parameters
we consider only density configurations which fulfill the fol-
lowing requirements.

~i! The spatial and orientational dependences factorize,
i.e., r̂(r ,v)5r(r )a(v). We focus on the case of a vanishing
demagnetization factor~i.e., a long and thin sample!, for
which the above factorization is fulfilled in the ferromagnetic
liquid @25#. We expect that this is a reasonable approxima-
tion also for the solid.

~ii ! The solid has an fcc structure, which is known to be
true for the Lennard-Jones fluid. We assume that the direc-
tion of the magnetization is parallel to the long axis of the
sample. However, the orientation of the lattice relative to this
axis is left for minimization. This addresses the issue of the
most favorable lattice orientation of the solid which emerges
from an orientationally ordered liquid by freezing. As it will
turn out, this orientation is determined bybulk contributions
to the free energy@see below the discussion following Eq.
~3.36!#.

~iii ! The orientational distribution has axial symmetry,
i.e.,

a~v!5
1

2p(
l50

`

a lPl~cosu!, ~2.12!

wherePl are Legendre polynomials andu denotes the angle
with respect to the preferred directionM̂ . This symmetry
does hold in a liquid. If there are deviations in a solid they
must be compatible with the symmetry of the lattice. There-
fore, in a more general expansion of the orientational distri-
bution in terms of spherical harmonicsYlm(v), contributions
with mÞ0 may arise only for rather large values ofl , e.g.,
for l>3 if M̂ i^111& and forl>4 if M̂ i^100&, where^ lhk& is
the standard notation for a set of equivalent lattice direction.

~iv! Following the literature we parametrize the number
density according to Eq.~2.9!. For hard spheres a more gen-
eral ansatz in terms of a Fourier series as well as Monte
Carlo simulations have revealed only small deviations from
this form @41#.

For sharp peaks with small overlap, i.e., for large values
of g, and in the thermodynamic limit Eq.~2.9! leads to the
following approximate expression for the translational en-
tropy contribution in Eq.~2.5!:

E
V
d3rr~r !ln„r~r !l3

…5S g

p D 3/2(
R

E
V
d3re2g~r2R!2

3H lnF S g

p D 3/2l3G2g~r2R!2J
1O~e24gR1

2
!

5r0VF32 ln~l2g/p!2
3

2G
1O~e24gR1

2
!, ~2.13!

where 2R1 is the nearest neighbor distance in the lattice.

III. EXCESS CONTRIBUTION
TO THE DENSITY FUNCTIONAL

A. Ansatz for the excess free energy

Regarding the perturbative contribution to the free energy
stemming from the excess part of the interaction potential,
one could be inclined to adopt from Refs.@8,9,25# the ex-
pression

Fexc
app52

1

2bEVd3r EVd3r 8dvdv8r̂~r ,v!r̂~r 8,v8!

3Q~r 122s! f̃ ~r2r 8,v,v8! ~3.1!

with

f̃ ~r12,v,v8!5~e2b@wLJ~r12!1wdip~r12 ,v,v8!#21!. ~3.2!

But this leads to unreasonable results already for the pure
Lennard-Jones fluid~e.g., atT*5kBT/e51.35 the values of
the liquid and solid densities at coexistence are
r l*5r ls

350.89 and rs*5rss
351.35 as compared with

r l*50.964 andrs*51.053 from numerical simulations@45#!.
Therefore we combine Eq.~3.1! with the ansatz of Curtin
and Ashcroft @29# which for the Lennard-Jones systems
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yields results that are in good agreement with simulation
data. To this end the excess contribution is divided into two
parts:

Fexc5Fexc,l1DFexc, ~3.3!

where the contribution for an isotropic fluid is approximated
by

Fexc,l

V
5
1

2
r0
2E

V
d3r FgHS~r0 ,r !wLJ~r !

1
1

b
~12^exp„2bwdip~r ,v,v8!…&vv8!G .

~3.4!

Here ^•••&v,v8 denotes the average over the molecular ori-
entationsv andv8 andgHS(r0 ,r ) is the Percus-Yevick pair
distribution function for hard spheres@46#. For the ferromag-
netic liquid as well as for the solid we add the expression

DFexc5
1

2EVd3rdvE
V
d3r 8dv8S r̂~r ,v!2

r0
4p D

3S r̂~r 8,v8!2
r0
4p D w̃~r2r 8,v,v8! ~3.5!

with

w̃~r12,v,v8!55
wLJ~r 12!1

1

b
@12exp„2bwdip~r12,v,v8!…#, r 12.R2

2e1
1

b
@12exp„2bwdip~r12,v,v8!…#, s,r 12,R2

2e, R1,r 12,s

0, r 12,R1

. ~3.6!

R2521/6s denotes the position of the minimum of the
Lennard-Jones potential andR15R1(r0) is half the nearest
neighbor distance in the solid~for an fcc crystal
R15225/6r0

21/3 so that for reasonable solid densities
r0s

3>0.8 one hasR1,s; for a ferromagnetic liquid the
dependence ofDFexc on R1 drops out!. The cutoff at
r 125R1 prevents self-interaction effects@29# and is neces-
sary to obtain a liquid-solid transition within a reasonable
density range. In Eq.~3.6! the Lennard-Jones potential is not
included in the argument of the exponential in order to en-
sure that in the absence of a dipole moment Eqs.~3.3!–~3.6!
reduce to the ansatz of Curtin and Ashcroft@29#.

B. Fluid and solid phases

Like any function that depends only on the relative orien-
tations and positions of two uniaxial molecules the kernel

w̃~r12,v,v8!5 (
l1l2l

wl1l2l
~r 12!F l1l2l

~v,v8,v12! ~3.7!

can be expanded in terms of the rotational invariant functions
F l1l2l

defined as@47#

F l1l2l
~v,v8,v12!5 (

m1 ,m2 ,m
C~ l 1l 2l ,m1m2m!

3Yl1m1
~v!Yl2m2

~v8!Ylm* ~v12!.

~3.8!

The numbersC( l 1l 2l ,m1m2m) denote Clebsch-Gordan coef-
ficients. In terms of these functions the dipolar potential is
simply given by

wdip~r12,v,v8!52
m2

r 12
3 ~4p!3/2A 2

15F112~v,v8,v12!.

~3.9!

Equation~3.5! can be written as a sum of three terms:

DFexc5
1

2EVd3rdvE
V
d3r 8dv8r̂~r ,v!r̂~r 8,v8!

3w̃~r2r 8,v,v8!

2
r0
4pEVd3rdvE

V
d3r 8dv8r̂~r ,v!w̃~r2r 8,v,v8!

1
1

2 S r0
4p D 2E

V
d3rdvE

V
d3r 8dv8w̃~r2r 8,v,v8!

5DFexc
~1!22DFexc

~2!1DFexc
~3!

5DFexc
~SR!1DFexc

~LR! . ~3.10!

Here, in order to proceed, we separated the kernel
w̃5w̃ (SR)1w̃ (LR) into a long-ranged partw̃ (LR) decaying
;r 12

23 at large distances and a short-ranged partw̃ (SR) whose
contributions decay;r 12

26 or faster. The expansion of the
exponential in Eq.~3.6! shows that the long-ranged part is
just the dipolar potentialwdip . Terms containing this part
must be treated carefully because integrals of the form
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*Vd
3rw̃ (LR)(r ,v,v8) are divergent forV→`. On the other

hand, one has*dv8wdip(r ,v,v8)50 so that the long-ranged
part of w̃ can be ignored inDFexc

(2) andDFexc
(3) Thus one finds

in the thermodynamic limit

lim
V→`

DFexc
~3!

V
5
1

2

r0
2

~4p!1/2
E
R1

`

drr 2w000~r !

522pr0
2e~A2s32R1

31 5
9A2s3!

1
1

2
r0
2E

R3
d3r

1

b

3@12^exp„2bwdip~r ,v,v8!…&vv8#.

~3.11!

With the substitution (r ,r2r 8)5(r1 ,r12) the second term in
Eq. ~3.10! can be written as

lim
V→`

DFexc
~2!

V
5
1

2

r0
2

4pER1
`

dr12dvr 12
2 a~v!

3F E dv12dv8w̃~r12,v,v8!G . ~3.12!

Using Eqs.~3.7! and ~3.8! it can be shown that the expres-
sion in square brackets does not depend onv, which allows
one to perform the integration overv leading to

DFexc
~2!5DFexc

~3! . ~3.13!

In the following paragraph we examine the remaining
term DFexc

(1) for the case of a homogeneously magnetized
fluid, for which r̂(r ,v)5r0a(v) so that we can resort to the
results of Ref.@9#. There we have analyzed thoroughly the
quantityV int @Eq. ~2.10! in Ref. @9## which has a completely
analogous form.~In particular, the kernel ofV int has exactly
the same long-ranged part.! Thus we have for a ferromag-
netic liquid in a sample with vanishing demagnetization fac-
tor

DFexc
~1!5DFexc

~1,SR!1DFexc
~1,LR! ~3.14!

with

lim
V→`

DFexc
~1,SR!

V
5r2(

l50

`

ũla l
2 ~fluid phases!, ~3.15a!

lim
V→`

DFexc
~1,LR!

V
52

8p

27
r2m2a1

2 ~fluid phases!,

~3.15b!

where the coefficientsũl are given by

ũl5
~21! l

Ap~2l11!3/2
E

s

`

drr 2w̃ll 0~r !. ~3.16!

Compared to Ref.@9# the occurrence ofw̃ll 0(r ) instead of
2(1/b) f̃ l l 0(r ) together with the different approximation for
the homogeneous liquid@Eq. ~3.4!# lead to minor quantita-

tive modifications of the liquid phase diagrams, whereas the
qualitative features remain unchanged.

Now we return to the discussion of the solid phase. With
Eqs.~2.12!, ~3.7!, andYl0(v)5A(2l11)/(4p)Pl(cosu) one
obtains

DFexc
~1!5

1

2EVd3r EVd3r 8r~r !r~r 8!

3 (
l1l2l

wl1l2l
~r 12!Kl1l2l

a l1
a l2

Pl~cosu12!

~3.17!

with

Kl1l2l
5S 1

2p D 2A 4p~2l11!

~2l 111!~2l 211!
C~ l 1l 2l ,000!.

~3.18!

For the short-ranged contribution the spatial integrations can
be extended over the whole space. After performing the
transformation„12(r1r 8),r2r 8…5(rS ,r12) and inserting Eq.
~2.9! the integration overrS results in

DFexc
~1,SR!5

1

2 S g

2p D 3/2(
l1l2l

Kl1l2l
a l1

a l2 (
R,R8PV

E
R3
d3r 12

3e2g/2@r122~R2R8!#2wl1l2l
~SR!~r 12!Pl~cosu12!.

~3.19!

Since the integrand depends only on the difference of the
lattice vectors one summation can be carried out:

lim
V→`

DFexc
~1,SR!

V
5
1

2
r0S g

2p D 3/2(
l1l2l

Kl1l2l
a l1

a l2 (
RPR3

E
R3
d3r 12

3e2g/2~r122R!2wl1l2l
~SR!~r 12!Pl~cosu12!. ~3.20!

Now we express the angleu12 between the direction of the
magnetizationM̂ and the vectorr12 in terms of the solid
anglesvM andv r of the directionsM̂ and r̂12 in a frame of
reference whose polar axis is parallel to the lattice vector
R:

Pl~cosu12!5
4p

2l11(m Ylm* ~vM !Ylm~v r !. ~3.21!

Since the exponential factor in Eq.~3.20! depends only on
the angle betweenr12 andR, i.e., on the polar angleu r in
v r , we need to consider only the termm50, and therefore

lim
V→`

DFexc
~1,SR!

V
5 (

l1l2l
al1l2la l1

a l2
~3.22!

with
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al1l2l5
1

2
r0S g

2p D 3/2Kl1l2l (
RPR3

Pl~cosuM !

3E
R3
d3re2g/2~r2R!2wl1l2l

~SR!~r !Pl~cosu r !.

~3.23!

In order to limit the number of terms in Eq.~3.23!, the ex-
ponential in Eq.~3.6! is expanded and only contributions up
to orderm4 are taken into account, i.e.,

w̃~SR!~r ,v,v8!5Fa~r !2
1

2
bwdip

2 ~r ,v,v8!1O~m6!

~3.24!

with

Fa~r !5H wLJ~r !, r.R2

2e, R1,r,R2

0, r,R1 .

~3.25!

In this approximation the coefficientsw̃l1l2l
can easily be

determined from Eq.~3.9! and the product rule for the rota-
tional invariants~see Appendix B of Ref.@9#!, which allows
one to writeF112

2 as a sum of the invariantsF l1l2l
. In this

order the only nonzero coefficients are

w000~r !5~4p!3/2S Fa~r !2
1

3

bm4

r 6 D , ~3.26!

w022~r !5w202~r !52
1

15

bm4

r 6
~4p!3/2, ~3.27!

w220~r !52
1

15A5
bm4

r 6
~4p!3/2, ~3.28!

w222~r !52
1

15
A 2

35

bm4

r 6
~4p!3/2, ~3.29!

w224~r !52
2

5
A 2

35

bm4

r 6
~4p!3/2. ~3.30!

C. Lattice sums

Since the integral in Eq.~3.23! depends only on the abso-
lute value of the lattice vectorR, one can group the lattice
vectors into shells with fixeduRu and thus consider the re-
stricted sum(R8Pl(cosuM)5(shellPl(cosuM) over an indi-
vidual shell first. Forl50 this equals the number of vectors
belonging to this shell. If we restrain ourselves to cubic lat-
tices using an orthogonal coordinate system which is fixed
with respect to this lattice, the vectors within one shell are
given by

R5A~6np~1! ,6np~2! ,6np~3!!, ~3.31!

where p runs over all six permutations of the numbers
$1,2,3%. The signs vary independently and$n1 ,n2 ,n3% is a
set of integers characterizing the shell.~For an fcc lattice

n11n21n3 must be even, but this is not essential for the
following arguments. The result is valid for any cubic lat-
tice.! If some of the numbersni are equal or zero not all of
the 48 vectors generated by the permutations and sign
changes in Eq.~3.31! are different. Thus the result after sum-
ming over these 48 vectors has to be divided by an appropi-
ate combinatorial factor. The angleuM betweenM andR is

cosuM5
( i6np~ i !Mi

~( iM i
2( ini

2!1/2
. ~3.32!

Therefore one has

(
shell

P2~cosuM !5
1

2(signs(p
3~( i6np~ i !Mi !

22( inp~ i !
2 ( iM i

2

( ini
2( iM i

2

5
4

( ini
2( iM i

2(
p

S 3(
i
M i

2np~ i !
2

2(
i
M i

2(
j
np~ j !
2 D ~3.33!

because the termsnp( i )np( j ) with iÞ j vanish after summa-
tion over the signs. Interchanging the order of the summa-
tions yields

(
shell

P2~cosuM !5
4

( ini
2( iM i

2(
i
M i

2(
p

S 3np~ i !
2 2(

j
np~ j !
2 D

50 ~3.34!

because(p3np( i )
2 5(p( jnp( j )

2 56(n1
21n2

21n3
2). @See also

the Appendix of Ref.@33# where this result has been derived
for the special caseM̂ i^100&.# This means that all coeffi-
cients al1l2l in Eq. ~3.23! with l52 are zero. Based on a

similar but more lengthy calculation one obtains forl54

(
shell

P4~cosu!5
7

12
hz~n!z~M !, ~3.35!

whereh is the number of vectors in the particular shell and

z„x5~x1 ,x2 ,x3!…5
x1
41x2

41x3
423~x1

2x2
21x2

2x3
21x3

2x1
2!

uxu4
.

~3.36!

In O(m4) the term proportional toa224 is the only contribu-
tion to the free energy which depends on the orientation of
M relative to the lattice. Due to the form of Eq.~3.35!
z(M ) can be factored out of the summation overuRu and the
most favorable direction ofM is given by the maximum or
minimum of z(M ) depending on the sign of the remaining
lattice sum. The functionz(M ) attains its maximum for
M;(1,0,0) and its minimum forM;(1,1,1) or, respec-
tively, the other directions which result from these under
symmetry operations of the cube. For the parameter values
which we have considered, the direction^111& parallel to the
space diagonal of the cubic unit cell turned out to be the
most stable one. This means, e.g., that a solid sphere sur-
rounded by a perfect conductor suppressing the depolariza-
tion field should spontaneously choose one of the eight
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equivalent^111& directions as the axis of polarization when
cooled down from the nonmagnetic phase.

D. Long-ranged contribution for the solid phase

For the long-ranged contribution to the excess free energy
@see Eq.~3.10!#

DFexc
~LR!52

4

9
m2a1

2E
V
d3r E

V
d3r 8r~r !r~r 8!r 12

23

3Q~r 122s!P2~cosu12! ~3.37!

the thermodynamic limit has to be performed carefully by
first considering a finite volume and then increasing its size
to infinity for a fixed shape. As for the ferromagnetic liquid
one expects that the result will depend on the shape of the
volume. For this purpose the density ansatz in Eq.~2.9! is
written as a Fourier series

r~r !5(
q

rqe
iq•r, rq5r0e

2q2/4g, ~3.38!

whereq runs over the reciprocal lattice (2pq•RPZ). @We
recall that even for finite volumes the sums in Eqs.~2.9! and
~3.38! run over an infinite lattice and the density is cut off by
the integration limits.# Using again the transformation

„

1
2 (r1r 8),r2r 8…5(rS ,r12) one finds

DFexc
~LR!52

4

9
m2a1

2(
q,q8

rqrq8E
2V
d3r 12r 12

23Q~r 122s!

3e1/2 i ~q2q8!•r12P2~cosu12!E
VS~r12!

d3r Se
i ~q1q8!•rS.

~3.39!

The integration regionVS(r12) for the center of mass vector
rS at fixed r12 is in general given by @9#
VS(r12)5V1(r12)ùV2(r12) with

V6~r12!5$r6 1
2 r12urPV%. ~3.40!

We now consider a cuboid with two equal sides of length
L and one side of lengthkL. Then the setVS(r12) is also a
cuboid so that

E
VS~r12!

d3r Se
iq•rS5E

~2L1ux12u!/2

~L2ux12u!/2
dxSE

~2L1uy12u!/2

~L2uy12u!/2
dyS

3E
~2kL1uz12u!/2

~kL2uz12u!/2
dzSe

i ~q1xS1q2yS1q3zS!.

~3.41!

After performing the integrations one realizes that only terms
with q1q850 contribute to the bulk term in Eq.~3.39!.
With x5r12/L5(x1 ,x2 ,x3) and Ṽ5V/L3 one obtains

Fexc
~LR!

V
52

4

9
r0
2m2a1

2(
q
e2q2/2gE

2Ṽ
d3xx23Q~x2s/L !

3eiLq•xP2~cosu!~12x1!~12x2!~12x3 /k!.

~3.42!

The termq50 is the only one that occurs also in the fluid
phase. After some algebra one can prove that this expression
is @as expected, see Eqs.~3.22!–~3.24! in Ref. @9## of the
form 2(8p/9)r0

2m2a1
2I C(k) with

I C~k!5
1

3
1

2

pkE0
1

dx~12x!F2x1Ak21x21A11x2

2A11k21x21 lnx2
1

2
ln~k21x2!

2 ln~11A11x2!1 ln~11A11k21x2!G ~3.43!

and I C(k→`)51/3. It is this contribution which has been
overlooked by Smithlineet al. @33# leading them to the
wrong conclusion that a ferromagnetic fcc solid cannot be
stable. It should be emphasized that for finite aspect ratios
k we expect to obtain the same free energy as in the limit
k→` if domain formation is taken into account@26,25#.
However, a rigorous proof of this statement for a solid within
our theory is beyond the scope of this work. For all other
terms (qÞ0) in Eq. ~3.42! we insert the Rayleigh expansion

eiq•r54p(
l ,m

i l j l~qr !Ylm* ~vq!Ylm~v r !. ~3.44!

The coefficientsj l denote spherical Bessel functions which
are bounded asu j l(x)u<Ml /uxu with numbersMl . Thus we
deduce for the radial integral in Eq.~3.42!

U E
s/L

g~v!

dxx21 j l~Lqx!xnU< Ml

LqEs/L

g~v!

dxxn22→0

for L→` andn>1; ~3.45!

the functiong(v) defines the upper limit for the radial inte-
gration in the directionv and is determined by the shape
of Ṽ. For this reason the last three factors in Eq.~3.42! can
be replaced by one. In order to determine the bulk contribu-
tion of Fexc

(LR)/V in the thermodynamic limit the integration in
Eq. ~3.42! can be replaced by an integration over the unit
sphere. The neglected parts from the ‘‘corners’’ of the
cuboid 2Ṽ are the Fourier transform of an absolutely inte-
grable function and thus vanish in the limitLq→`. By using
Eq. ~3.44! and due to the identity*dx j2(x)/x52 j 1(x)/x we
therefore obtain for the long-ranged contribution

lim
V→`

DFexc
~LR!

V
52

8p

27
r0
2m2a1

2S 126(
qÞ0

P2~cosuq!

3e2q2/2g
j 1~qs!

qs D . ~3.46!
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Since, as shown above, for cubic lattices the sum
(shellP2(cosuq) vanishes, in this case the long-ranged part in
the limit k→` reduces to the expression given in Eq.~3.15b!
for the liquid phase.

In sum these results enable us to calculate the free energy
of the solid phase as a function ofr0, g @Eq. ~2.9!# and
$a l% @Eq. ~2.12!# according to@see Eqs.~3.3!, ~3.10!, and
~3.13!#

F~r0 ,T;g,$a l%!5F ref1Fexc,l1DFexc
~1,SR!1DFexc

~1,LR!2DFexc
~3! ,

~3.47!

where the different contributions are given by Eqs.~2.5!,
~3.4!, ~3.22!, ~3.46! @recall thatDFexc

(1,LR) for the fcc solid
happens to be given by Eq.~3.15b!#, and~3.11!.

IV. PHASE DIAGRAMS AND LINDEMANN PARAMETER

By numerical minimization of Eq.~3.47! and its counter-
part for fluid phases with respect to the width parameterg
and the orientational distributiona(cosu) we determine the
free energy of the system as a function of the mean density
r0:

F~r0 ,T!5min
g,a l

F~r0 ,T;g,$a l%!

5F„r0 ,T;gmin~r0 ,T!,$a l
min~r0 ,T!%…. ~4.1!

The coexistence densitiesr1 and r2 of two phases follow
from the double tangent construction:

]F

]r0
U

r1

5
]F

]r0
U

r2

, F~r1!2r1
]F

]r0
U

r1

5F~r2!2r2
]F

]r0
U

r2

.

~4.2!

Since for the solid phase the numerical determination of
F(r0 ,T) for one value of the parametersr0 andT requires
already a substantial CPU time, we have calculated this func-
tion for eachT only for seven values ofr0 within a density
interval in which the phase transition is expected. These re-
sults are then interpolated with a Chebychev polynomial for
which Eq. ~4.2! is solved. This procedure also avoids diffi-
culties as far as the numerical differentation with respect to
r0 is concerned.

Figure 1 displays the resulting phase diagram for the re-
duced dipole momentm*5m/As3e51. At low densities
there is a wide coexistence region between the isotropic gas
and liquid with a critical point at Tc*51.429 and
rc*50.296. At higher densities we find the liquid-solid tran-
sition with a density gaprs*2r l*50.1–0.15. The dashed
line indicates continuous phase transtions between isotropic
and ferromagnetic phases. It is terminated by critical end
points at the coexistence lines of the first-order transitions.
Within the solid phase the dashed line corresponds to the line
of Curie points at which the ferromagnetic solid turns into a
solid without orientational order~plastic solid!, whereas
within the liquid phase the line denotes the transition be-
tween the isotropic and the ferromagnetic liquid. This line of
critical pointsr f c(T) can be obtained analytically from the
coefficient ofa1

2 in the excess free energy@see Eq.~7.10! in
Ref. @9##. In the approximation used here, i.e., taking into

account only terms up to orderm4 in Fexc, this coefficient is
fully determined by the long-ranged contributions, which are
identical for the liquid and solid phases, so that one finds

r f c~T!5
9kBT

4pm2 . ~4.3!

In Ref. @9# it has been demonstrated that the inclusion of
higher order terms inm2 leads only to slight deviations from
the straight line given by Eq.~4.3!. At the triple temperature
Tt*50.964 there is three-phase coexistence between the gas
phase, the ferromagnetic liquid, and the ferromagnetic solid.

The corresponding phase diagram form*51.35 is shown
in Fig. 2. In the temperature intervalT*51.3–1.8 for the
liquid phases we find the features already discussed in Refs.

FIG. 1. The phase diagram in terms ofT*5kBT/e and
r*5rs3 for m*5m/As3e51 comprises five phases: gas (g), iso-
tropic liquid (l ), ferromagnetic liquid~fl!, isotropic ~plastic!, solid
(s), ferromagnetic solid~fs!. In the shaded area one has two-phase
coexistence. The dashed lines indicate second-order phase transi-
tions between orientationally ordered and disordered phases. The
circle marks the liquid-gas critical point (Tc* ,rc* )5(1.429,0.296)
and the squares critical end points: (Tcep* ,rcep* )5(0.998,0.715),
(1.222,0.875), and (1.457,1.044). Below the triple point~dotted
line! (Tt* ,rgt* ,r f l t* ,r f st* )5(0.964,0.017,0.753,0.994) the system
phase separates into the gas phase and the ferromagnetic solid.

FIG. 2. Phase diagram form*51.35. We use the same desig-
nation of the phases and the same notation as in Fig. 1. We find the
liquid-gas critical point~open circle! (Tc* ,rc* )5(1.615,0.294), the
tricritical point ~full circle! (Ttc* ,r tc* )5(1.493,0.587), and the two
triple points ~dotted lines! (Tt1* ,rgt1* ,r l t1* ,r f l t1* )5(1.430,0.089,
0.553,0.626) and (Tt2* ,rgt2* ,r f l t2* ,r f st2* )5(1.392,0.070,0.692,
1.031).
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@8,9#, namely, the common critical point between the isotro-
pic gas and the isotropic liquid and a tricritical point. At the
latter the character of the isotropic-ferromagnetic liquid
phase transition changes from first order to second order.
The line of critical points for this transition originates from
this tricritical point and ends at a critical end point. In addi-
tion there is the ferromagnetic solid at high densities so that
two triple points emerge, which in this case are close to each
other.~The gas and the ferromagnetic liquid and solid coex-
ist atT*51.392, the gas and the isotropic and ferromagnetic
liquid atT*51.430.! At high temperatures the solid loses its
orientational order along a line of critical points. The same is
true for the casem*52 ~Fig. 3! in which the liquid-gas
critical point has disappeared and only a single isotropic fluid
phase is left within our present approximation. The region of
stability of the ferromagnetic liquid increases substantially
with increasing dipole moment. Only for small dipole mo-
mentsm*,1 is the ferromagnetic liquid preempted com-
pletely by the freezing transition as shown in Fig. 4 for
m*50.85. At even lower values of the dipole moment the

critical end point temperature falls below the triple point
temperature.

Hemmer and Imbro@19# have analyzed the Heisenberg
fluid in the limit of very weak but long-ranged interactions
for which the mean-field theory turns out to be exact. It is
interesting to note that they have found a qualitatively iden-
tical sequence of phase diagrams.

Usually the width of the thermal vibrations of the par-
ticles around their equilibrium positions is not measured in
terms ofg but by the Lindemann parameterL, which is the
root mean square displacement of the particles from their
equilibrium positions normalized to the nearest neighbor dis-
tanceRnn. Here we approximateL by

L5Rnn
21F S g

p D 3/2E
R3
d3rr 2e2gr2G1/2 ~4.4!

which yieldsL5222/331/2r0
1/3g1/2 for the fcc lattice. Figure 5

displays the temperature dependence of the Lindemann pa-
rameter along the gas-solid and liquid-solid coexistence lines
for three values of the dipole moment. Below and slightly
above the triple pointL increases with temperature while at
higher temperatures it gradually levels off at an approxi-
mately constant value independent ofm* as expected from
the phenomenological Lindemann criterium@48#. At the
critical end points the Lindemann parameter exhibits a small
upward cusp.

V. BODY-CENTERED-TETRAGONAL SOLID

Wei and Patey have observed a body-centered-tetragonal
~bct! lattice for the ferromagnetic solid in a Monte Carlo
simulation of dipolar soft spheres@2#. Weis and Levesque@4#
examined both the bct and the fcc structure in a simulation of
dipolar hard spheres, but they were not able to decide which
one is more stable. They report a helical variation of the
local magnetization in the fcc crystal. This possibility is not
yet taken into account in our calculations@see the assumption
~i! in Sec. II# in order to avoid in this first step of our analysis
the enormously increased complexity induced by a spatially
varying orientational distribution~see, e.g., Ref.@25#!. More-
over it cannot be ruled out that this observation is an artefact
due to the periodic boundary conditions used in the simula-

FIG. 3. Phase diagram form*52. As compared with Figs. 1
and 2 the liquid-gas critical point has disappeared so that there are
only four phases. The plastic solid without orientational order is
stable only at very high temperatures and densities.~The closest
packing of spheres corresponds tor*5A2.! The inset is focused on
the tricritical point (Ttc* ,r tc* )5(2.914,0.522) and the triple point
(Tt* ,r l t* ,r f l t* ,r f st* )5(2.633,0.440,0.628,1.095).

FIG. 4. Phase diagram form*50.85. For this small dipole mo-
ment the ferromagnetic liquid phase is never stable. The liquid-gas
critical point is given by (Tc* ,rc* )5(1.385,0.299), the triple point
by (Tt* ,rgt* ,r l t* ,r f st* )5(0.831,0.0081,0.779,0.981), and the critical
end point by (Tcep* ,rcep* )5(1.004,0.995).

FIG. 5. Temperature dependence of the Lindemann parameter
along the gas-solid and gas-liquid coexistence lines for three values
of the dipole moment. The triple points are denoted by triangles and
the critical end points by squares.
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tions. The bct structure has also been identified as the ground
state of an electrorheological fluid@49# even if higher multi-
pole moments are taken into account@50#. This has been
confirmed experimentally@36#. Inspired by these findings we
have examined the stability of the bct solid within the frame-
work of the density-functional theory developed in Secs. II
and III.

In this case the lattice vectors are given by

R5
R1

2
~A6n1 ,A6n2 ,2n3!, ~5.1!

where all three numbersniPZ have the same parity. The
nearest neighbor distance is given by 2R152(1/6r0)

1/3 and
the magnetization points into thez direction. The corre-
sponding reciprocal lattice vectors are

q5
2p

R1
~m1 /A6,m2 /A6,m3/2! ~5.2!

with miPZ andm11m21m3 even. In contrast to the cubic
lattice the relation(shellP2(cosuM)50 does not hold; in fact

cos2uM5
4n3

2

6~n1
21n2

2!14n3
2 ~5.3!

and thusP2(cosuM) is constant within each shell, which as
above is defined byuRu5const.~Here one shell consists of
only up to 16 elements.! Therefore the contributions with
l52 in Eq.~3.22! and the sum in Eq.~3.46! do not vanish for
the bct lattice.

If these changes are taken into account the free energy of
the bct solid can be calculated in the same way as for the fcc
solid using Eq.~3.47! and the equations referenced there.
Again this function is minimized with respect to the width
parameterg and the orientational distributions coefficients
a l for fixed mean densityr0. The comparison of the numeri-
cal results forFbct(r0) andF fcc(r0) reveals that within our
approximation the bct structure isless stable than the fcc

structure for all considered values of the parameters
(m*<2) and therefore the phase diagrams do not contain
phase transitions between different solid structures.

VI. SUMMARY

We have analyzed the phase behavior of Stockmayer flu-
ids by using a suitably generalized modified weighted den-
sity approximation for the density-functional theory. The fol-
lowing main results have been obtained.

~i! For small dipole moments the phase diagram re-
sembles that of the Lennard-Jones fluid with a critical point
and a triple point. Within the solid phase there are second-
order phase transitions along a line of Curie points between
an orientationally disordered solid and a ferromagnetic solid
~Fig. 4!. In the latter phase the magnetization points along
the ^111& direction of the fcc lattice.

~ii ! For larger dipole moments a ferromagnetic nematic
phase appears between a line of critical points and the freez-
ing transition~Fig. 1!. This line is given by Eq.~4.3! and is
terminated by two critical end points on the gas-liquid and
the liquid-solid coexistence line, respectively.

~iii ! Upon a further increase of the dipole moment the
isotropic-ferromagnetic liquid transition turns first order
within a temperature interval determined by an emerging
second triple point and a tricritical point~Fig. 2!.

~iv! For even larger dipole moments the isotropic gas-
liquid transition disappears due to the formation of a ferro-
magnetic liquid at high temperatures~Fig. 3!. The orienta-
tionally disordered solid is stable only at very high
temperatures.

~v! The Lindemann parameterL, which measures the
mean amplitude of the thermal vibrations of the particles in
the solid phases, is approximately constant (L50.11–0.12)
along the freezing line but decreases near the triple point and
along the sublimation line~Fig. 5!. L exhibits a small cusp
singularity at the critical end points.

~vi! Within our approximation the body-centered-
tetragonal lattice is less stable than the fcc lattice.
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